Skip to main content

Green Gold: The Second Harvest | An Introduction to the Hemp & Environment Series


Green Gold: The Second Harvest

An Introduction to the Hemp & Environment Series




There’s something poetic about hemp growing where nothing else will.
Maybe it’s stubbornness. Maybe it’s redemption.
Either way, it’s the kind of plant that shows up after the damage is done—quietly, humbly, and ready to work.

For too long, humanity has dug deep and taken much—coal, copper, oil, gold—and left the land scarred and silent. Whole hillsides gutted, rivers poisoned, towns hollowed out. The mining boom gave us light and power, but it also left shadows behind.

Now, a different kind of industry is stirring in the dirt. One not fueled by extraction, but by restoration.
And standing tall in that movement is an ancient ally wearing a new name tag: hemp.

Hemp doesn’t judge the soil it grows in.
It just gets to work—sending roots down where nothing else dares, drinking toxins, binding loose earth, and whispering to the wind, “This land isn’t dead yet.”
That’s not marketing; it’s biology. And maybe, just maybe, it’s a kind of mercy too.

This series, “Green Gold: The Second Harvest,” explores hemp’s role in healing the wounds of industry—starting with mining.
We’ll dig into the science of soil remediation, the economics of post-mining land use, and the rough realities of trying to grow something living on ground that’s been stripped bare.
But we’ll also talk about what it means—symbolically and spiritually—to bring life back to what greed once killed.

Because this isn’t just about hemp.
It’s about us.
It’s about what happens when the diggers become gardeners—when the very hands that broke the ground return to tend it.

If the first harvest was profit,
the second must be healing.
And that second harvest begins right here, root by root, acre by acre, in the dust of forgotten mines and the hope of green return.

So, roll up your sleeves.
We’re going back to the dirt.


 🔗 Next post coming soon: “Hemp for Soil Remediation & Erosion Control in Mining”

Comments

People's Choice

What is Delta 9?

Delta-9 refers to delta-9-tetrahydrocannabinol , commonly known as THC . Not a Delta 9 Compound-but it looks cool. THC is the primary psychoactive compound found in cannabis that is responsible for the "high" or intoxicating effects when consumed. Delta-9 specifically refers to the specific position of a double bond in the THC molecule. It is the most well-known and studied cannabinoid in cannabis and is what gives marijuana its euphoric and mind-altering properties. When people talk about THC in cannabis, they are usually referring to delta-9-THC. 🧭 Explore Tennessee Cannabiz 🛞 Series Master Hub

Hemp The Natural Solution For Soil Remediation

Harnessing the Natural Power of Hemp : A Sustainable Solution for Soil Remediation Hemp as the Soil Janitor In recent years, the concept of sustainable agriculture and environmental restoration has gained significant attention. One promising solution to address contaminated soil is the usage of hemp, a versatile plant that possesses remarkable natural properties for soil cleansing. This essay aims to explore the benefits of planting hemp as a means of remediation, with a focus on its ability to mitigate radiation-contaminated soil. By examining the scientific evidence and real-life examples, we will highlight the potential of hemp to revolutionize soil remediation practices. Planting hemp offers a viable and sustainable solution for cleansing soil due to its natural properties, including phytoremediation , bioaccumulation , and its potential to restore radiation-damaged soil, thereby promoting a healthier environment. 1. The Natural Properties of Hemp for Soil Cleansing: Hemp posse...

How Does THCA Convert to THC?

The process that converts THCA (Tetrahydrocannabinolic Acid) into THC (Tetrahydrocannabinol) is known as, DECARBOXYLATION. A hemp plant with vibrant green leaves, showcasing a single, glistening THCA crystal nestled among the buds. Decarboxylation is a chemical reaction that occurs when THCA is exposed to heat, light, or aging. During this process, the carboxyl group (COOH) is removed from the THCA molecule, converting it to THC. The steps of the decarboxylation process are: 1. Heat application: Applying heat, such as through smoking, vaporizing, or baking, provides the energy needed to initiate the decarboxylation reaction. 2. Carboxyl group removal: The heat causes the carboxyl group (COOH) to be released from the THCA molecule, leaving behind the THC molecule. The chemical reaction can be represented as: THCA → THC + CO2 Where the carbon dioxide (CO2) is the byproduct released during the decarboxylation. This conversion of THCA to THC is important because: • THC is the primary psyc...

Free the Green: A Plea for Federal Marijuana Rescheduling

Cannabis Plea For Presidential Clemency Free the Green: A Plea for Federal Marijuana Rescheduling Tennessee has already shown us what happens when entrenched interests and moral gatekeepers get to decide the fate of cannabis. High-THCA hemp is being outlawed, alcohol profiteers are cementing control over legal hemp, and private prisons still profit from outdated laws. The result? Ordinary citizens and small businesses are punished, while special interests thrive. The Holier-Than-Thou Interference Too often, policy is driven not by science or fairness, but by people and organizations who think they know better than everyone else. Regulators, politicians, and industry lobbyists have allowed personal biases and financial incentives to dictate what Americans can grow, sell, or consume. THCA bans, complex licensing systems, and arbitrary enforcement all prove the point: when marijuana is scheduled federally as it is now, interference from outsiders rules the day. Why Rescheduling Ma...

Optimizing the Decarboxylation process to Achieve the Desired THC Potency?

 When optimizing the decarboxylation process to achieve the desired THC potency, there are several key factors to consider: Heating the THCA CANNABIS 1. Temperature :  • Higher temperatures (above 300°F/150°C) can lead to faster decarboxylation but also increase the risk of over-decarboxylation and potential degradation of THC. • The optimal temperature range is typically between 220-245°F (105-118°C) for complete decarboxylation while preserving THC potency. 2. Time: • Longer exposure to heat results in more complete decarboxylation, but too much time can lead to THC degradation. • The ideal decarboxylation time is usually between 30-60 minutes, depending on the temperature used. 3. Moisture Content: • Cannabis with higher moisture content may require longer decarboxylation times to achieve the same level of THC conversion. • Drying the cannabis prior to decarboxylation can help improve the efficiency of the process. 4. Cannabis Strain and Cannabinoid Profile: • Different can...